

Question Paper with Solution

MATHEMATICS _ 5 Sep. _ SHIFT - 1 AHMS

Motion

H.O. : 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in | \boxtimes : info@motion.ac.in

MOTION JEE MAIN 2020

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
Q. 1 If the volume of a parallelopiped, whose coterminus edges are given by the vectors $\vec{a}=\hat{i}+\hat{j}+n \hat{k}, \quad \vec{b}=2 \hat{i}+4 \hat{j}-n \hat{k}$ and $\vec{c}=\hat{i}+n \hat{j}+3 \hat{k} \quad(n \geq 0)$, is 158 cu . units, then:
(1) $\vec{a} \cdot \overrightarrow{\mathrm{c}}=17$
(2) $\vec{b} \cdot \vec{c}=10$
(3) $n=9$
(4) $n=7$

Sol. 2

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 1 & n \\
2 & 4 & -n \\
1 & n & 3
\end{array}\right|=158 \\
& \left(12+n^{2}\right)-(6+n)+n(2 n-4)=158 \\
& 3 n^{2}-5 n+6-158=0 \\
& 3 n^{2}-5 n-152=0 \\
& 3 n^{2}-24 n+19 n-152=0 \\
& (3 n+19)(n-8)=0 \\
& \Rightarrow n=8 \\
& \Rightarrow \vec{b} \cdot \vec{c}=10
\end{aligned}
$$

Q. 2 A survey shows that 73\% of the persons working in an office like coffee, whereas 65\% like tea. If x denotes the percentage of them, who like both coffee and tea, then x cannot be:
(1) 63
(2) 54
(3) 38
(4) 36

Sol. 4
$n($ coffee $)=\frac{73}{100}$
$n($ tea $)=\frac{65}{100}$
$n(T \cap C)=\frac{x}{100}$
$n(C \cup T)=\mathrm{n}(\mathrm{C})+\mathrm{n}(\mathrm{T})-\mathrm{x} \leq 100$
$=73+65-x \leq 100$
$\Rightarrow x \geq 38$
Ans. 36
Q. 3 The mean and variance of 7 observations are 8 and 16 , respectively. If five observations are $2,4,10,12,14$, then the absolute difference of the remaining two observations is:
(1) 1
(2) 4
(3) 3
(4) 2

Sol. 4
$\operatorname{Var}(x)=\sum \frac{x_{i}^{2}}{n}-(\bar{x})^{2}$

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

Go Premium at ₹ 1100

हमारा विश्वास... हर एक विद्यार्यी है ख़ास

$16=\frac{x_{1}^{2}+x_{2}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}}{7}-64$
$80 \times 7=x_{1}{ }^{2}+x_{2}^{2}+x_{3}^{2}+\ldots . .+x_{7}^{2}$
Now, $x_{2}^{6}+x_{7}^{2}=560-\left(x_{1}^{2}+\ldots . . x_{5}^{2}\right)$
$x_{6}^{2}+x_{7}^{2}=560-(4+16+100+144+196)$
$\mathrm{x}_{6}^{2}+\mathrm{x}_{7}^{2}=100$
Now, $\frac{x_{1}+x_{2}+\ldots .+x_{7}}{7}=8$
$x_{6}+x_{7}=14$
from (1) \& (2)
$\left(x_{6}+x_{7}\right)^{2}-2 x_{6} x_{7}=100$
$2 x_{6} x_{7}=96 \quad \Rightarrow x_{6} x_{7}=48$
Now, $\left|x_{6}-x_{7}\right|=\sqrt{\left(x_{6}+x_{7}\right)^{7}-4 x_{6} x_{7}}$
$=\sqrt{196-192}=2$
Q. 4 If $2^{10}+2^{9} \cdot 3^{1}+2^{8} \cdot 3^{2}+\ldots .+2 \cdot 3^{9}+3^{10}=S-2^{11}$, then S is equal to:
(1) 3^{11}
(2) $\frac{3^{11}}{2}+2^{10}$
(3) 2.3^{11}
(4) $3^{11}-2^{12}$

Sol. 1
let
$S^{\prime}=2^{10}+2^{9} 3^{1}+2^{8} 3^{2}+----+2.3^{9}+3^{10}$
$\frac{3 \times S^{1}}{2}=2^{9} \times 3^{1}+2^{8} .3^{2}+\cdots+3^{10}+\frac{3^{11}}{2}$
$\frac{-S^{\prime}}{2}=2^{10}-\frac{3^{11}}{2}$
$S^{\prime}=3^{11}-2^{11}$
Now S' $=$ S -2^{11}
$S=3^{11}$
Q. 5 If $3^{2 \sin 2 \alpha-1}, 14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an A.P. for some α, then the sixth terms of this A.P. is:
(1) 65
(2) 81
(3) 78
(4) 66

Sol. 4

CRASH COURSE

FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
$28=3^{2 \sin 2 \alpha-1}+3^{4-2 \sin 2 \alpha}$
$28=\frac{9^{\sin 2 \alpha}}{3}+\frac{81}{9^{\sin 2 \alpha}}$
Let $9^{\sin 2 \alpha}=\mathrm{t}$
$28=\frac{t}{3}+\frac{81}{t}$
$t^{2}-84 t+243=0$
t = 81, 3
$9^{\sin 2 \alpha}=9^{2}$ or 3
$\sin 2 \alpha=2$ or $\sin 2 \alpha=1 / 2$
(Not possible)
Now three terms in A.P. are
1, 14, 27
Next term are
40,53,66
Q. 6 If the common tangent to the parabolas, $y^{2}=4 x$ and $x^{2}=4 y$ also touches the circle, $x^{2}+y^{2}=c^{2}$, then c is equal to:
(1) $\frac{1}{2}$
(2) $\frac{1}{4}$
(3) $\frac{1}{\sqrt{2}}$
(4) $\frac{1}{2 \sqrt{2}}$

Sol. 3
$y=m x+\frac{1}{m}$
$x^{2}=4\left(m x+\frac{1}{m}\right)$
$x^{2}-4 m x-\frac{4}{m}=0$
$D=0$
$16 m^{2}+\frac{16}{m}=0$
$16\left(\frac{m^{3}+1}{m}\right)=0$
$m=-1$
$\Rightarrow y+x=-1$
Now, $\left|\frac{-1}{\sqrt{2}}\right|=c$
$c=\frac{1}{\sqrt{2}}$

छमारा विश्वास... हर एक विद्यार्थी है ख़ास

Q. 7 If the minimum and the maximum values of the function $f:\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow R$, defined by
$f(\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ -\cos ^{2} \theta & -1-\cos ^{2} \theta & 1 \\ 12 & 10 & -2\end{array}\right|$ are m and M respectively, then the ordered pair (m, M) is equal to :
(1) $(0,4)$
(2) $(-4,0)$
(3) $(-4,4)$
(4) $(0,2 \sqrt{2})$

Sol. 2
$f(\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ -\cos ^{2} \theta & -1-\cos ^{2} \theta & 1 \\ 12 & 10 & -2\end{array}\right|$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{2}$
$\left|\begin{array}{ccc}1 & -1-\sin ^{2} \theta & -\sin ^{2} \theta \\ 1 & -1-\cos ^{2} \theta & -\cos ^{2} \theta \\ 2 & 10 & 8\end{array}\right|$
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}$
$\left|\begin{array}{ccc}1 & -1 & -\sin ^{2} \theta \\ 1 & -1 & -\cos ^{2} \theta \\ 2 & 2 & 8\end{array}\right|$
$1\left(2 \cos ^{2} \theta-8\right)+\left(8+2 \cos ^{2} \theta\right)-4 \sin ^{2} \theta$
$f(\theta)=4 \cos 2 \theta$
Q. 8 Let $\lambda \in \mathrm{R}$. The system of linear equations
$2 x_{1}-4 x_{2}+\lambda x_{3}=1$
$x_{1}-6 x_{2}+x_{3}=2$
$\lambda x_{1}-10 x_{2}+4 x_{3}=3$
is inconsistent for:
(1) exactly two values of λ
(2) exactly one negative value of λ.
(3) every value of λ.
(4) exactly one positive value of λ.

Sol. 2

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
$D=\left|\begin{array}{ccc}2 & -4 & \lambda \\ 1 & -6 & 1 \\ \lambda & -10 & 4\end{array}\right|=0$
$2(-14)+4(4-\lambda)+\lambda(6 \lambda-10)=0$
$-28+16-4 \lambda+6 \lambda^{2}-10 \lambda=0$
$6 \lambda^{2}-14 \lambda-12=0$
$3 \lambda^{2}-7 \lambda-6=0$
$3 \lambda^{2}-9 \lambda+2 \lambda-6=0$
$(3 \lambda+2)(\lambda-3)=0$
$\lambda=-2 / 3,3$
$\mathrm{D}_{1}=\left|\begin{array}{ccc}1 & -4 & \lambda \\ 2 & -6 & 1 \\ 3 & -10 & 4\end{array}\right|$
$\Rightarrow-14+4(5)+\lambda(-2)$
$\Rightarrow-2 \lambda+6$
$D_{2}=\left|\begin{array}{lll}2 & 1 & \lambda \\ 1 & 2 & 1 \\ \lambda & 3 & 4\end{array}\right|$
$\Rightarrow 2(5)-1(4-\lambda)+\lambda(3-2 \lambda)$
$\Rightarrow 10-4+\lambda+3 \lambda-2 \lambda^{2}$
$\Rightarrow-2 \lambda^{2}+4 \lambda+6$
$\Rightarrow-2\left(\lambda^{2}-2 \lambda-3\right)$
$\Rightarrow-2\left[\lambda^{2}-3 \lambda+\lambda-3\right]$
$\Rightarrow-2(\lambda-3)(\lambda+1)$
$D_{3}=\left|\begin{array}{ccc}2 & -4 & 1 \\ 1 & -6 & 2 \\ \lambda & -10 & 3\end{array}\right| \Rightarrow 2(-18+20)+4(3-2 \lambda)+1(-10+6 \lambda)$
$=4+12-8 \lambda-10+6 \lambda$
$=-2 \lambda+6$
$\Rightarrow \lambda=-2 / 3$ is answer
Q. 9 If the point P on the curve, $4 x^{2}+5 y^{2}=20$ is farthest from the point $Q(0,-4)$, then $P Q^{2}$ is equal to:
(1) 48
(2) 29
(3) 21
(4) 36

Sol. 4
Let P be $(\sqrt{5} \cos \theta, 2 \sin \theta)$

CRASH COURSE
 FOR JEE ADVANCED 2020

FREE Online Lectures Available onYouTube

हमारा विश्वास... हर एक विद्यार्यी है ख़ास

Now, $\mathrm{PQ}=\sqrt{(\sqrt{5} \cos \theta)^{2}+(2 \sin \theta+4)^{2}}$
$\mathrm{PQ}=\sqrt{5 \cos ^{2} \theta+(2 \sin \theta+4)^{2}}$
$\frac{\mathrm{d}(\mathrm{PQ})}{\mathrm{d} \theta}=0 \Rightarrow-10 \sin \theta \cos \theta+(4 \sin \theta+8) \cos \theta=0$
$\Rightarrow-6 \sin \theta \cos \theta+8 \cos \theta=0$
$\cos \theta=0 \quad$ or $\sin \theta=\frac{4}{3}$
Not possible
So P is either $(0,2)$ or $(0,-2)$
$P Q^{2}=36$
Q. 10 The product of the roots of the equation $9 x^{2}-18|x|+5=0$ is :
(1) $\frac{25}{81}$
(2) $\frac{5}{9}$
(3) $\frac{5}{27}$
(4) $\frac{25}{9}$

Sol. 1
$9 t^{2}-18 t+5=0$
$9 \mathrm{t}^{2}-15 \mathrm{t}-3 \mathrm{t}+5=0$
$(3 t-5)(3 t-1)=0$
$|x|=\frac{5}{3}, \frac{1}{3}$
$\Rightarrow \quad x=\frac{5}{3}, \frac{-5}{3}, \frac{1}{3}, \frac{-1}{3}$
$\Rightarrow \quad \mathrm{P}=\frac{25}{81}$
Q. 11 If $y=y(x)$ is the solution of the differential equation $\frac{5+e^{x}}{2+y} \cdot \frac{d y}{d x}+e^{x}=0$ satisfying $y(0)=1$, then a value of $y\left(\log _{e} 13\right)$ is:
(1) 1
(2) 0
(3) 2
(4) -1

Sol. 4

$$
\frac{d y}{d x}+\left(e^{x} \times \frac{y+2}{e^{x}+5}\right)=0
$$

CRASH COURSE

FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

$$
\begin{aligned}
& \frac{d y}{d x}+\left(\frac{e^{x}}{e^{x}+5}\right) y=\frac{-2 e^{x}}{e^{x}+5} \\
& \text { I.F. }=\int e^{\int \frac{e^{x}}{e^{x}+5}} d x \\
& =e^{\int\left(1-\frac{5}{e^{x}+5}\right) d x} \\
& =e^{\int\left(1-\frac{5 e^{-x}}{1+5 e^{-x}}\right) d x} \\
& =e^{x+\ln (1+5 e-x)} \\
& =e^{x} \cdot\left(1+5 e^{-x}\right) \Rightarrow\left(e^{x}+5\right) \\
& y\left(e^{x}+5\right)=-\int 2 e^{x} d x \\
& y\left(e^{x}+5\right)=-2 e^{x}+C \\
& \Downarrow x=0 \\
& (6)=-2+C \Rightarrow C=8 \\
& y(\ln 13)=\frac{8-2 \times 13}{13+5}=\frac{-18}{18}=-1
\end{aligned}
$$

Q. 12 If S is the sum of the first 10 terms of the series $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)+\tan ^{-1}\left(\frac{1}{21}\right)+\ldots . .$, then $\tan (\mathrm{S})$ is equal to :
(1) $\frac{5}{11}$
(2) $\frac{5}{6}$
(3) $-\frac{6}{5}$
(4) $\frac{10}{11}$

Sol. 2

$$
\begin{aligned}
& \mathrm{S}=\tan ^{-1}\left(\frac{1}{1+1 \times 2}\right)+\tan ^{-1}\left(\frac{1}{1+2 \times 3}\right)+\ldots \\
& \mathrm{T}_{\mathrm{r}}=\tan ^{-1}\left(\frac{1}{1+r(r+1)}\right) \\
& \mathrm{T}_{\mathrm{r}}=\tan ^{-1}(\mathrm{r}+1)-\tan ^{-1} \mathrm{r} \\
& \mathrm{~T}_{1}=\tan ^{-1} 2-\tan ^{-1} 1 \\
& \mathrm{~T}_{2}=\tan ^{-1} 3-\tan ^{-12} \\
& \mathrm{~T}_{3}=\tan ^{-1} 4-\tan ^{-1} 3 \\
& \mathrm{~T}_{10}=\tan ^{-1} 11-\tan ^{-1} 10 \\
& \Rightarrow \mathrm{~S}=\tan ^{-1} 11-\tan ^{-1} 1
\end{aligned}
$$

हमारा विश्वास... हए एक विद्यार्यी है खुास

$\Rightarrow \tan \mathrm{S}=\frac{10}{12}=\frac{5}{6}$
Q. 13 The value of $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1+e^{\sin x}} \mathrm{dx}$ is:
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{4}$
(3) π
(4) $\frac{3 \pi}{2}$

Sol. 1

$I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1+e^{\sin x}} d x$
$I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{e^{\sin x}}{1+e^{\sin x} d x \quad \Rightarrow 2 I=\pi}$
$\mathrm{I}=\frac{\pi}{2}$
Q. 14 If (a, b, c) is the image of the point $(1,2,-3)$ in the line, $\frac{x+1}{2}=\frac{y-3}{-2}=\frac{z}{-1}$, then $a+b+c$
(1) 2
(2) 3
(3) -1
(4) 1

Sol. 1
$\overrightarrow{P M} \perp(2 \hat{i}-2 \hat{j}-\hat{k})$
$\Rightarrow(2 \lambda-2) \cdot 2+(1-2 \lambda)(-2)+(3-\lambda)(-1)=0$
$\Rightarrow 4 \lambda-4+4 \lambda-2+\lambda-3=0$
$\Rightarrow 9 \lambda=9 \Rightarrow \lambda=1$
$\Rightarrow \mathrm{m}(1,1,-1)$
Now, $\mathrm{p}^{\prime}=2 \mathrm{M}-\mathrm{P}$
$=2(1,1,-1)-(1,2,-3)$
$=(1,0,1)$
$a+b+c=2$

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available on You Tuhe

MOTION JEE MAIN 2020

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
Q. 15 If the function $f(x)=\left\{\begin{array}{ll}k_{1}(x-\pi)^{2}-1, & x \leq \pi \\ k_{2} \cos x & , x>\pi\end{array}\right.$ is twice differentiable, then the ordered pair $\left(k_{1}, k_{2}\right)$ is equal to:
(1) $(1,1)$
(2) $(1,0)$
(3) $\left(\frac{1}{2},-1\right)$
(4) $\left(\frac{1}{2}, 1\right)$

Sol. 4
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}2 k_{1}(x-\pi) ; & x \leq \pi \\ -k_{2} \sin x & ; x>\pi\end{array}\right.$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=\left\{\begin{array}{cc}2 k_{1} & ; x \leq \pi \\ -k_{2} \cos x ; & x>\pi\end{array}\right.$
$2 \mathrm{k}_{1}=\mathrm{k}_{2}$
Q. 16 If the four complex numbers $z, \bar{z}, \bar{z}-2 \operatorname{Re}(\bar{z})$ and $z-2 \operatorname{Re}(z)$ represent the vertices of a square of side 4 units in the Argand plane, then $|z|$ is equal to:
(1) 2
(2) 4
(3) $4 \sqrt{2}$
(4) $2 \sqrt{2}$

Sol. 4

Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$C A^{2}=A B^{2}+B C^{2}$
$2^{2} x^{2}+2^{2} y^{2}=32$
$x^{2}+y^{2}=8$
$\sqrt{x^{2}+y^{2}}=2 \sqrt{2}$
Q. 17 If $\int\left(e^{2 x}+2 e^{x}-e^{-x}-1\right) e^{\left(e^{x}+e^{-x}\right)} d x=g(x) e^{\left(e^{x}+e^{-x}\right)}+c$, where c is a constant of integration, then $g(0)$ is equal to :
(1) 2
(2) e
(3) 1
(4) e^{2}

Sol. 1

हमारा विश्वास... हर एक विद्यार्यी है ख़ास

```
\(\int\left(e^{2 x}+2 e^{x}-e^{-x}-1\right) e^{\left(e^{x}+e^{-x}\right)} d x\)
\(\int\left(e^{2 x}+e^{x}-1\right) e^{\left(e^{x}+e^{-x}\right)} d x+\int\left(e^{x}-e^{-x}\right) e^{\left(e^{x}+e^{-x}\right)} d x\)
\(\int\left(e^{x}+1-e^{-x}\right) e^{\left(e^{x}+e^{-x}+x\right)} d x+\int\left(e^{x}-e^{-x}\right) e^{\left(e^{x}+e^{-x}\right)} d x\)
\(e^{\left(e^{x}+e^{-x}+x\right)}+e^{e^{x}+e^{-x}}+C\)
\(\left(e^{e^{x}+e^{-x}}\right)\left[e^{x}+1\right]+C\)
    \(\Downarrow\)
    \(g(x)\)
\(\Rightarrow \mathrm{g}(0)=2\)
```

Q. 18 The negation of the Boolean expression $\mathrm{x} \leftrightarrow \sim \mathrm{y}$ is equivalent to :
(1) $(x \wedge y) \wedge(\sim x \vee \sim y)$
(2) $(x \wedge y) \vee(\sim x \wedge \sim y)$
(3) $(x \wedge \sim y) \vee(\sim x \wedge y)$
(4) $(\sim x \wedge y) \vee(\sim x \wedge \sim y)$

Sol. 2
As we know
$\sim(p \leftrightarrow q)=(p \wedge \sim q) \vee(\sim p \wedge q)$
$\Rightarrow s o, \sim(x \leftrightarrow \sim y)=(x \wedge y) \vee(\sim x \wedge \sim y)$
Q. 19 If α is positive root of the equation, $p(x)=x^{2}-x-2=0$, then $\lim _{x \rightarrow \alpha^{+}} \frac{\sqrt{1-\cos (p(x))}}{x+\alpha-4}$ is equal to :
(1) $\frac{1}{2}$
(2) $\frac{3}{\sqrt{2}}$
(3) $\frac{3}{2}$
(4) $\frac{1}{\sqrt{2}}$

Sol. 2
$f(x)=x^{2}-x-2\left\langle{ }_{-1}^{2}=\alpha\right.$
$\lim _{x \rightarrow 2^{+}} \frac{\sqrt{1-\cos (x-2)(x+1)}}{x+\alpha-4}$

CRASH COURSE

FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTuhe

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
$\lim _{x \rightarrow 2+} \frac{\sqrt{1-\cos (x-2)(x+1)}}{(x-2)}$
$\lim _{h \rightarrow 0} \frac{\sqrt{1-\cos (\mathrm{h} \times(\mathrm{h}+3))}}{h}$
$\lim _{h \rightarrow 0} \sqrt{\frac{1-\cos (\mathrm{h}(\mathrm{h}+3))}{h^{2} \times(h+3)^{2}} \times(h+3)^{2}} \Rightarrow \sqrt{\frac{1}{2} \times 9}=\frac{3}{\sqrt{2}}$
Q. 20 If the co-ordinates of two points A and B are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ respectively and P is any point on the conic, $9 x^{2}+16 y^{2}=144$, then $P A+P B$ is equal to :
(1) 6
(2) 16
(3) 9
(4) 8

Sol. 4
$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
$e=\sqrt{1-\frac{9}{16}}=\frac{\sqrt{7}}{4}$
$F_{1}(\sqrt{7}, 0), F_{2}(-\sqrt{7,0})$
$\mathrm{PF}_{1}+\mathrm{PF}_{2}=2 \mathrm{a}$
$P A^{1}+P B^{2}=2 \times 4=8$
Q. 21 The natural number m, for which the coefficient of x in the binomial expansion of
$\left(x^{m}+\frac{1}{x^{2}}\right)^{22}$ is 1540, is \qquad
Sol. 13
$\mathrm{T}_{\mathrm{r}+1}={ }^{22} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{\mathrm{m}}\right)^{22-r}\left(\frac{1}{\mathrm{x}^{2}}\right)^{r}$
$={ }^{22} C_{r}(x)^{22 m-m r-2 r}$
Given ${ }^{22} \mathrm{C}_{\mathrm{r}}=1540={ }^{22} \mathrm{C}_{19} \Rightarrow \mathrm{r}=19$
$\because 22 m-r m-2 r=1$
$\Rightarrow m=\frac{2 r+1}{22-r}$
$\mathrm{m}=13$ (At $\mathrm{r}=19$)

हमारा विश्वास... हर एक विद्यार्यी है ख़ास

Q. 22 Four fair dice are thrown independently 27 times. Then the expected number of times, at least two dice show up a three or a five, is

Sol. 11

(atteat 2 or 3) $={ }^{4} C_{2}\left(\frac{2}{6}\right)^{2}\left(\frac{4}{6}\right)^{2}+{ }^{4} C_{3}\left(\frac{2}{6}\right)^{3}\left(\frac{4}{6}\right)^{1}+{ }^{4} C_{4}\left(\frac{2}{6}\right)^{4}$
$=6 \times \frac{1}{9} \times \frac{4}{9}+4 \times \frac{1}{27} \times \frac{2}{3}+\frac{1}{81}$
$=\frac{33}{81}=\frac{11}{27} \Rightarrow n P \quad \Rightarrow 11$
Q. 23 Let $f(x)=x .\left[\frac{x}{2}\right]$, for $-10<x<10$, where [t] denotes the greatest integer function. Then the number of points of discontinuity of f is equal to.
Sol. 8

$$
\begin{aligned}
& f(x)=x\left[\frac{x}{2}\right],-10<x<10 \\
& -5<\frac{x}{2}<5 \\
& -5 x \quad-5<\frac{x}{2}<-4 \\
& -4 x
\end{aligned} \quad-4<\frac{x}{2}<30
$$

Number of point of discontinuity $=8$

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
Q. 24 The number of words, with or without meaning, that can be formed by taking 4 lettersat a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike, is
Sol. 240
SS, Y, LL, A, B, U
$S \square S \square$

$$
\begin{aligned}
& \Rightarrow{ }^{5} \mathrm{C}_{2} \times \frac{4!}{2!} \times{ }^{2} \mathrm{C}_{1} \\
& \Rightarrow 120 \times 2 \\
& =240
\end{aligned}
$$

Q. 25 If the line, $2 x-y+3=0$ is at a distance $\frac{1}{\sqrt{5}}$ and $\frac{2}{\sqrt{5}}$ from the lines $4 x-2 y+\alpha=0$ and $6 x-3 y+\beta=0$, respectively, then the sum of all possible values of α and β is
Sol. 30
$L_{1}: 2 x-y+3=0$
$L_{2}: 4 x-2 y+\alpha=0$
$L_{3}: 6 x-3 y+\beta=0$

$$
\begin{array}{ll}
\frac{\left|\frac{\alpha}{2}-3\right|}{\sqrt{5}}=\frac{1}{\sqrt{5}} & \Rightarrow \frac{\alpha}{2}-3=1,-1 \\
& \Rightarrow \alpha=8,4 \\
\frac{\left|\frac{\beta}{3}-3\right|}{\sqrt{5}}=\frac{2}{\sqrt{5}} & \Rightarrow \frac{\beta}{3}-3=2,-2 \\
& \Rightarrow \beta=15,3
\end{array}
$$

जब इन्होने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

 JEE MAIN RESULT 2019

KOTA'S PIONEER IN DIGITAL EDUCATION

SERVICES			
SILVER		GOLD	
Classroom Lectures (VOD)	NA		
Live interaction	NA		
Doubt Support	NA		
Academic \& Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA	NA	
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop \& Camp	NA	NA	
Motion Solution Lab- Supervised			
learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring			

FEE STRUCTURE			
CLASS	SILVER	GOLD	PLATINUM
7th/8th	FREE	₹ 12,000	₹ 35,000
9th/10th	FREE	₹ 15,000	₹ 40,000
11th	FREE	₹ 29,999	₹ 49,999
12th	FREE	₹ 39,999	₹ 54,999
12th Pass	FREE	₹ 39,999	₹ 59,999

+ Student Kit will be provided at extra cost to Platinum Student.
* SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
** GOLD (Online) can be converted to regular classroom (Any MOTION Center) by paying difference amount after lockdown.
*** PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown.

New Batch Starting from :
16 \& 23 September 2020
Zero Cost EMI Available

